となるはずである。(6)式との比較により
i
q (8)
であることが分かる。よって、(1)式の特定の点 Aからの球面波は
dSikru
r
iAexp
(9)
となる。
ここでの計算結果は前項のものと同じであるが、フレネル・ゾーンについての考え方
を踏まえると4)P103、5)
、ここでの積分は実質、長さにしてホット・ゾーン、つまり第一フ
レネル・ゾーンの半分の領域が点 Pの振幅に寄与することになる。もしこの光学系に開口
絞りを設ければ、積分結果が異なり、前項でも触れた様に、このゾーン以外の影響が現れ
てくることになる。開口に多くのフレネル・ゾーンが含まれている場合には、その影響は
微小であるが、開口の大きさが、ホット・ゾーンの領域に近づくに従い影響は大きくなる。
そして、次第に上記積分とは異なった結果になり、合成波は必ずしも平面波にはならなく
なる。このとき、波面の微小部分も平面波のままで進行する事が出来なくなるので、光線
の進行により伝播して行く、光線の直交面である幾何光学的波面(一次波面)は精度的に
成立しにくくなり、本来の等位相面を表わす波動光学的波面とは異なる形状となって行く。
回折積分計算が必要になる。例えば、レーザビームに於いては細長く指向性の強い、焦点
距離が非常に長く、フレネル数が1に近い場合がごく一般的に考えられる。この時、ビー
ムの一次波面に直交する光線を設定し、進行したそれら光線に対する直交面を新たな波面
としてそのまま考えることは、妥当では無い。
また、既述の通り媒質中の分子、電気双極子による回折波(散乱波)は 2次波面の様
な球面波となると考えられるので(それらが入射波に影響を与え、合成されて射出波とな
る。)、それらの分子が、ここでのホット・ゾーン内に於いて十分密に、規則正しく存在す
れば、それらは上記の連続的な積分と同じ結果を齎す。つまり、その様な媒質を透過した
平面波はやはり平面波として射出してくることになり、こうした媒質においては幾何光学
が成立する。(この様な媒質の性質は誘電率等の限られた数に代表させることが出来る。大
部分の光学機器の設計・評価に於いてはこうした媒質の性質が前提となっている。)もし、
波長に比べ分子の密度が希薄であると、連続的な積分とは異なる合成状態が現れ(上述の
レーリー散乱や、今後取り上げるミー散乱等)、透過波はもはや、きれいな平面波ではなく
なる。